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Example Combinatorial Problems
▶ n-colorings of 1× 5 boards.

▶ Squares are colored with letters.

▶ Rotating the board 180◦, gives a new coloring.

180◦−−−→

▶ We define two colorings are ”the same” if rotating one results
in the other.

▶ Special Case

3 / 31



n-Colorings of 1× 5 Board

▶ Goal: Count the number of unique colorings with 180◦ flips.

n5

n3

▶ n5 − n3 The number of colorings which don’t equal their 180◦

rotation.

∼=

(One equivalence class)

▶ 1
2(n

5 − n3) (The number of equivalence class of colorings
which don’t equal their 180◦ rotation.)
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n-Colorings of 1× 5 Board (Continued)

▶ 1
2(n

5 − n3) (The number of different equivalence classes of
n-colorings which don’t equal their 180◦ rotation.)

▶ n3 (The number of different equivalence classes of n-colorings
which equal their 180◦ rotation.)

▶ 1
2(n

5 − n3) + n3 (The total number of different equivalence
classes of n-colorings.)

▶ Note: This argument can be generalized to n-colorings of
1× k board.
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Multiset

▶ Given a finite set S and integer k ≥ 0.

▶
(
S
k

)
denotes the set of k-element subsets of S .

▶ e.g. S = {1, 2, 3} and k = 2

▶
(
S
2

)
= {12, 13, 23}
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Multiset

▶ A multiset is a set with repeated elements

▶ e.g. {1, 1, 2, 2, 3, 3}
▶ {1, 2, 1, 3, 2, 3} = {1, 1, 2, 2, 3, 3}
▶ (

(S
k

)
) denotes the set of k-elements multisets on S .

▶ S = {1, 2, 3} and k = 2

▶
(S
k

)
= {12, 13, 23}, (

(S
k

)
) = {11, 22, 33, 12, 13, 23}
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Graphs

▶ A (finite) graph G consists of a vertex set
V = {v1, v2, v3, · · · , vp} and edges set E = {e1, · · · , eq} with

a function ψ : E → (
(V
2

)
)
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Graphs

▶ A (finite) graph G consists of a vertex set
V = {v1, v2, v3, · · · , vp} and edges set E = {e1, · · · , eq} with

a function ψ : E → (
(V
2

)
)

▶ V (vertex) = {1, 2, 3, 4, 5} and
E (edge) = {e1, e2, e3, e4, e5, e6, e7, e8}

▶ (
(V
2

)
) = {11, 22, 33, 44, 55, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45}
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Graphs

▶ E (edge) = {e1, e2, e3, e4, e5, e6, e7, e8}
▶ (

(V
2

)
) = {11, 22, 33, 44, 55, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45}

▶ e.g. ψ(e1) = ψ(e2) = 11 (e1, e2 are called loops)

▶ ψ(e3) = ψ(e4) = 14 (there is a multiple edge between 1 and
4)
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Adjacency Matrix of the graphG
▶ p is the number of vertices in the graph.

▶ The adjacency matrix of the graph G is the p × p matrix
A = A(G ), whose (i , j)-entry aij is equal to the number of
edges incident to vi and vj .

▶ A(G ) =


2 1 0 2 0
1 0 0 0 1
0 0 0 0 0
2 0 0 0 1
0 1 0 1 1
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Walks

▶ A walk in G of length ℓ from vertex u to vertex v is a
sequence va1 = u, ea1 , va2 , ea2 , · · · , vaℓ , eaℓ , vaℓ+1

= v

▶ A walk in G of length 1 from vertex 1 to vertex 2 is a
sequence 1, e5, 2

▶ A walk in G of length 2 from vertex 1 to vertex 2 could be the
sequence 1, e2, 1, e5, 2 and sequence 1, e1, 1, e5, 2.
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Counting Walks

Goal:Count the number of walks from vertex u to vertex v .

Theorem
For any integer ℓ ≥ 1, the (i , j)-entry of the matrix A(G )ℓ is eq al
to the number of walks from vi to vj in G of length ℓ.

Sketch of proof

Let A = (aij). The (i,j)-entry of A(G )ℓ is given by

(A(G )ℓ)ij =
∑

aii1ai1i2 · · · aiℓ−1j

where the sum ranges over all sequences (i1, · · · , iℓ−1)
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Example

▶ ℓ = 2

▶ For each sequence of ℓ, vertices starting at i and ending at j ,
there are aii walks of length one from vertex i to i and then
aii1 walks of length one from ai to ai1 , and so on, after ℓ steps
we arrive at j , then sum over all such sequences

▶

(A(G )2)21 = a21a11 + a22a21 + a23a31 + a24a41 + a25a51

(A(G )2)21 = 2 · 1 + 0 · 1 + 0 · 0 + 0 · 2 + 1 · 0 = 2
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Example (Continued)

ℓ = 2

A(G )2 = A(G ) =


2 1 0 2 0
1 0 0 0 1
0 0 0 0 0
2 0 0 0 1
0 1 0 1 1


2

=


9 2 0 4 3
2 2 0 3 1
0 0 0 0 0
4 3 0 5 1
3 1 0 1 3


(A(G )2)21 = 2
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Example (Continued)

▶ ℓ = 2

A(G )2 = A(G ) =


2 1 2 0
1 0 0 1
2 0 0 1
0 1 1 1


2

=


9 2 4 3
2 2 3 1
4 3 5 1
3 1 1 3


(A(G )2)21 = 2
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Aℓ = U .diag(λℓ1, ..., λ
ℓ
p)U

−1

▶▶ An easier way to count the number of walks

▶ A real symmetric p × p matrix M has p linearly independent
real eigenvectors.

A(G ) =

1 1 1
1 0 1
1 1 0


λ1 = 1 +

√
2, λ2 = −1, λ3 = 1−

√
2
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Aℓ = U .diag(λℓ1, ..., λ
ℓ
p)U

−1

A(G ) =

1 1 1
1 0 1
1 1 0


λ1 = 1 +

√
2

λ2 = −1

λ3 = 1−
√
2

v1 = (
√
2, 1, 1)

v2 = (0,−1, 1)

v3 = (−
√
2, 1, 1)
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Aℓ = U .diag(λℓ1, ..., λ
ℓ
p)U

−1

▶ Goal: Diagonalize A

A(G ) =

1 1 1
1 0 1
1 1 0



U =

 0 −
√
2
2

√
2
2

−
√
2

2
1
2

1
2√

2
2

1
2

1
2



diag(λℓ1, ..., λ
ℓ
p) =

−1 0 0

0 1−
√
2 0

0 0 1 +
√
2

ℓ

U−1 = UT =

 0 −
√
2
2

√
2
2

−
√
2

2
1
2

1
2√

2
2

1
2

1
2
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Aℓ = U .diag(λℓ1, ..., λ
ℓ
p)U

−1

A(G )ℓ = (U · diag(λ1, ..., λp) · U−1)ℓ

A(G )ℓ = (U·diag(λ1, ..., λp)·U−1) . . . (U·diag(λ1, ..., λp)·U−1)

A(G )ℓ = U · diag(λ1, ..., λp)ℓ · U−1

A(G )ℓ = U · diag(λℓ1, ..., λℓp) · U−1

=

 0 −
√
2
2

√
2
2

−
√
2

2
1
2

1
2√

2
2

1
2

1
2


−1 0 0

0 1−
√
2 0

0 0 1 +
√
2

ℓ
 0 −

√
2
2

√
2
2

−
√
2

2
1
2

1
2√

2
2

1
2

1
2
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The complete graph Kp

Kp is a graph with vertex set V = {v1, ..., vp}, and one edge
between any two distinct vertices.

▶ Kp has p vertices and
(p
2

)
= 1

2p(p − 1) edges.

▶ Example

▶ V = {1, 2, 3}. K3 has 3 vertices and
(3
2

)
= 1

23(3− 1) = 3
edges.
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Closed walks
▶ A closed walk of G is a walk that ends where it begins.
▶ The number of closed walks of length ℓ in Kp from some

vertex vi to itself is given by

(A(Kp)
ℓ)ii =

1

p
((p − 1)ℓ + (p − 1)(−1)ℓ)

▶ Example: Complete Graph K3

(A(K3)
1)ii =

1

3
((3− 1)1 + (3− 1)(−1)1) = 0

(A(K3)
2)ii =

1

3
((3− 1)2 + (3− 1)(−1)2) = 2
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Algebraic Proof

▶ J denotes the p × p matrix of all 1′s and I is the identity
matrix.

▶ J3 =

1 1 1
1 1 1
1 1 1

 , I =
1 0 0
0 1 0
0 0 1


▶ A(Kp) = J − I

▶ A(K3) = J3 − I3 =

1 1 1
1 1 1
1 1 1

−

1 0 0
0 1 0
0 0 1

 =

0 1 1
1 0 1
1 1 0


▶ Binomial theorem

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk =

n∑
k=0

(
n

k

)
xkyn−k
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Algebraic Proof

A(Kp)
ℓ = (J − I )ℓ =

ℓ∑
k=0

(
ℓ

k

)
Jk(−I )ℓ−k

Jk = pk−1J(mathematical induction)

A(Kp)
ℓ = (J − I )ℓ =

ℓ∑
k=1

(−1)ℓ−k

(
ℓ

k

)
pk−1J + (−1)ℓI

Binomial theorem again,

(J − I )ℓ =
1

p
((p − 1)ℓ − (−1)ℓ)J + (−1)ℓI
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Algebraic Proof

A(Kp)
ℓ
ij =

1

p
((p − 1)ℓ − (−1)ℓ)

A(Kp)
ℓ
ii =

1

p
((p − 1)ℓ + (p − 1)(−1)ℓ)
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The total number of walks of length ℓ in Kp.

p∑
i=1

p∑
j=1

(A(Kp)
ℓ)ij = p(p − 1)ℓ

▶ Note: We will sum over all the walks instead of just closed walks.

Proof:
(p2 − p)A(Kp)

ℓ
ij + pA(Kp)

ℓ
ii =

(p2 − p)
1

p
((p − 1)ℓ − (−1)ℓ) + p · 1

p
((p − 1)ℓ + (p − 1)(−1)ℓ) =

p(p − 1)ℓ
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Probability matrix

Let M = M(G ) be the matrix whose rows and columns are indexed
by the vertex {v1, · · · , vp} of G , and whose (u,v)-entry is given by

Muv =
µuv
du

µuv - the number of edges between u and v .

du - the number edges incident to u

Muv - the probablity that is one starts at u, then the next step will
be to v .
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Example

▶ When u = 2, du = 2

▶ When u = 2 and v = 1, µuv = 1

▶ (2,1)-entry is M21 =
µ21
d2

= 1
2

▶ note: d3 = 0 so we can get rid of isolated point 3.
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Example

▶

M(G ) =


2
5

1
5

2
5 0

1
2 0 0 1

2
2
3 0 0 1

3
0 1

3
1
3

1
3



A(G ) =


2 1 2 0
1 0 0 1
2 0 0 1
0 1 1 1
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Theorem: Let G be a finite graph. Then the probablity
matrix M = M(G ) is diagonalizable and has only real
eigenvalues.

▶ Let D be the diagonal matrix whose rows and columns are
indexed by the vertices of G , with Dvv =

√
dv

▶ Then

(DMD−1)uv =
√

du ·
µuv
du

· 1√
dv

(DMD−1)uv =
µuv√
dudv

▶ DMD−1 is a symmetric matrix.

▶ M is diagonalizable and has only real eigenvalues.
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Thank you

Citation:
Stanley, Richard, ”Topics in Algebraic Combinatorics”
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