Some Topics in Algebraic Combinatorics (Count Walks on Graphs)

Hanzhang Yin

December 16 2021

Outline

- 1. Introduction to the combinatoric with "coloring" $1 \times n$ rectangles
- 2. Definition of graphs and walks
- 3. Counting walks on graphs
- 4. Probability matrix of a graph

Example Combinatorial Problems

• n-colorings of 1×5 boards.

Squares are colored with letters.

▶ Rotating the board 180°, gives a new coloring.

- We define two colorings are "the same" if rotating one results in the other.
- Special Case

n-Colorings of 1×5 Board

► Goal: Count the number of unique colorings with 180° flips.

n⁵ - n³ The number of colorings which don't equal their 180° rotation.

(One equivalence class)

▶ ¹/₂(n⁵ - n³) (The number of equivalence class of colorings which don't equal their 180° rotation.)

n-Colorings of 1×5 Board (Continued)

- ▶ $\frac{1}{2}(n^5 n^3)$ (The number of different equivalence classes of n-colorings which don't equal their 180° rotation.)
- n³ (The number of different equivalence classes of n-colorings which equal their 180° rotation.)
- ▶ $\frac{1}{2}(n^5 n^3) + n^3$ (The total number of different equivalence classes of n-colorings.)
- Note: This argument can be generalized to *n*-colorings of 1 × k board.

Multiset

Multiset

A multiset is a set with repeated elements

▶ e.g.
$$\{1, 1, 2, 2, 3, 3\}$$

$$\blacktriangleright \ \{1,2,1,3,2,3\} = \{1,1,2,2,3,3\}$$

• $\binom{S}{k}$ denotes the set of k-elements multisets on S.

•
$$S = \{1, 2, 3\}$$
 and $k = 2$

$$\triangleright \ \binom{S}{k} = \{12, 13, 23\}, \ \binom{S}{k} = \{11, 22, 33, 12, 13, 23\}$$

Graphs

A (finite) graph G consists of a vertex set
 V = {v₁, v₂, v₃, · · · , v_p} and edges set E = {e₁, · · · , e_q} with
 a function ψ : E → ((^V₂))

Graphs

• A (finite) graph G consists of a vertex set $V = \{v_1, v_2, v_3, \dots, v_p\}$ and edges set $E = \{e_1, \dots, e_q\}$ with a function $\psi : E \to (\binom{V}{2})$

▶
$$V(vertex) = \{1, 2, 3, 4, 5\}$$
 and
 $E(edge) = \{e1, e2, e3, e4, e5, e6, e7, e8\}$
▶ $(\binom{V}{2}) = \{11, 22, 33, 44, 55, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45\}$

Graphs

- $\blacktriangleright E(edge) = \{e1, e2, e3, e4, e5, e6, e7, e8\}$
- $\blacktriangleright (\binom{V}{2}) = \{11, 22, 33, 44, 55, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45\}$
- e.g. $\psi(e1) = \psi(e2) = 11$ (e1, e2 are called loops)
- ψ(e3) = ψ(e4) = 14 (there is a multiple edge between 1 and
 4)

Adjacency Matrix of the graph G

- p is the number of vertices in the graph.
- The adjacency matrix of the graph G is the p × p matrix A = A(G), whose (i, j)-entry a_{ij} is equal to the number of edges incident to v_i and v_j.

Walks

A walk in G of length ℓ from vertex u to vertex v is a sequence v_{a1} = u, e_{a1}, v_{a2}, e_{a2}, ··· , v_{aℓ}, e_{aℓ}, v_{aℓ+1} = v

- A walk in G of length 1 from vertex 1 to vertex 2 is a sequence 1, e5, 2
- A walk in G of *length* 2 from vertex 1 to vertex 2 could be the sequence 1, e2, 1, e5, 2 and sequence 1, e1, 1, e5, 2.

Counting Walks

Goal:Count the number of walks from vertex u to vertex v.

Theorem

For any integer $\ell \ge 1$, the (i, j)-entry of the matrix $A(G)^{\ell}$ is eq al to the number of walks from v_i to v_j in G of length ℓ .

Sketch of proof

Let
$$A = (a_{ij})$$
. The (i,j)-entry of $A(G)^{\ell}$ is given by

$$(A(G)^{\ell})_{ij} = \sum a_{ii_1}a_{i_1i_2}\cdots a_{i_{\ell-1}j}$$

where the sum ranges over all sequences $(i_1, \cdots, i_{\ell-1})$

Example

▶ l = 2

For each sequence of ℓ, vertices starting at i and ending at j, there are a_{ii} walks of length one from vertex i to i and then a_{ii1} walks of length one from a_i to a_{i1}, and so on, after ℓ steps we arrive at j, then sum over all such sequences

$$(A(G)^2)_{21} = a_{21}a_{11} + a_{22}a_{21} + a_{23}a_{31} + a_{24}a_{41} + a_{25}a_{51}$$

$$(A(G)^2)_{21} = 2 \cdot 1 + 0 \cdot 1 + 0 \cdot 0 + 0 \cdot 2 + 1 \cdot 0 = 2$$

Example (Continued)

 $\ell=2$

$$A(G)^{2} = A(G) = \begin{bmatrix} 2 & 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}^{2} = \begin{bmatrix} 9 & 2 & 0 & 4 & 3 \\ 2 & 2 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 4 & 3 & 0 & 5 & 1 \\ 3 & 1 & 0 & 1 & 3 \end{bmatrix}$$
$$(A(G)^{2})_{21} = 2$$

Example (Continued)

$$A(G)^{2} = A(G) = \begin{bmatrix} 2 & 1 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}^{2} = \begin{bmatrix} 9 & 2 & 4 & 3 \\ 2 & 2 & 3 & 1 \\ 4 & 3 & 5 & 1 \\ 3 & 1 & 1 & 3 \end{bmatrix}$$
$$(A(G)^{2})_{21} = 2$$

$A^{\ell} = U.diag(\lambda_1^{\ell},...,\lambda_p^{\ell})U^{-1}$

An easier way to count the number of walks

A real symmetric p × p matrix M has p linearly independent real eigenvectors.

$$A(G) = egin{bmatrix} 1 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{bmatrix}$$
 $\lambda_1 = 1 + \sqrt{2}, \ \lambda_2 = -1, \ \lambda_3 = 1 - \sqrt{2}$

 $A^{\ell} = U.diag(\lambda_1^{\ell},...,\lambda_p^{\ell})U^{-1}$

$$A(G) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
$$\lambda_1 = 1 + \sqrt{2}$$
$$\lambda_2 = -1$$
$$\lambda_3 = 1 - \sqrt{2}$$
$$v_1 = (\sqrt{2}, 1, 1)$$
$$v_2 = (0, -1, 1)$$
$$v_3 = (-\sqrt{2}, 1, 1)$$

 $A^{\ell} = U.diag(\lambda_1^{\ell},...,\lambda_p^{\ell})U^{-1}$

Goal: Diagonalize A

d

$$A(G) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
$$U = \begin{bmatrix} 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
$$iag(\lambda_1^{\ell}, ..., \lambda_p^{\ell}) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 - \sqrt{2} & 0 \\ 0 & 0 & 1 + \sqrt{2} \end{bmatrix}^{\ell}$$
$$U^{-1} = U^T = \begin{bmatrix} 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

 $\mathcal{A}^{\ell} = U.diag(\lambda_1^{\ell},...,\lambda_p^{\ell})U^{-1}$

$$A(G)^{\ell} = (U \cdot diag(\lambda_1, ..., \lambda_p) \cdot U^{-1})^{\ell}$$

 $A(G)^{\ell} = (U \cdot diag(\lambda_1, ..., \lambda_p) \cdot U^{-1}) \dots (U \cdot diag(\lambda_1, ..., \lambda_p) \cdot U^{-1})$

$$A(G)^{\ell} = U \cdot diag(\lambda_1, ..., \lambda_p)^{\ell} \cdot U^{-1}$$

$$\mathsf{A}(\mathsf{G})^\ell = \mathsf{U} \cdot \mathsf{diag}(\lambda_1^\ell,...,\lambda_p^\ell) \cdot \mathsf{U}^{-1}$$

 $= \begin{bmatrix} 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 - \sqrt{2} & 0 \\ 0 & 0 & 1 + \sqrt{2} \end{bmatrix}^{\ell} \begin{bmatrix} 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{-\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{\sqrt{2}}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

The complete graph K_p

 K_p is a graph with vertex set $V = \{v_1, ..., v_p\}$, and one edge between any two distinct vertices.

- K_p has p vertices and $\binom{p}{2} = \frac{1}{2}p(p-1)$ edges.
- Example

▶ $V = \{1, 2, 3\}$. K_3 has 3 vertices and $\binom{3}{2} = \frac{1}{2}3(3-1) = 3$ edges.

Closed walks

- ► A *closed walk* of *G* is a walk that ends where it begins.
- The number of closed walks of length l in K_p from some vertex v_i to itself is given by

$$(A(K_p)^{\ell})_{ii} = \frac{1}{p}((p-1)^{\ell} + (p-1)(-1)^{\ell})$$

Example: Complete Graph K₃

Algebraic Proof

J denotes the p × p matrix of all 1's and I is the identity matrix.

$$J_{3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$A(K_{p}) = J - I$$
$$A(K_{3}) = J_{3} - I_{3} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Binomial theorem

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$

Algebraic Proof

$$A(K_p)^{\ell} = (J-I)^{\ell} = \sum_{k=0}^{\ell} {\ell \choose k} J^k (-I)^{\ell-k}$$

 $J^k = p^{k-1}J(mathematical induction)$

$$A(K_p)^{\ell} = (J-I)^{\ell} = \sum_{k=1}^{\ell} (-1)^{\ell-k} {\ell \choose k} p^{k-1} J + (-1)^{\ell} I$$

Binomial theorem again,

$$(J-I)^{\ell} = \frac{1}{p}((p-1)^{\ell} - (-1)^{\ell})J + (-1)^{\ell}I$$

Algebraic Proof

$$egin{aligned} &\mathcal{A}(\mathcal{K}_{p})_{ij}^{\ell}=rac{1}{p}((p-1)^{\ell}-(-1)^{\ell})\ &\mathcal{A}(\mathcal{K}_{p})_{ii}^{\ell}=rac{1}{p}((p-1)^{\ell}+(p-1)(-1)^{\ell}) \end{aligned}$$

The total number of walks of length ℓ in K_p .

$$\sum_{i=1}^{p} \sum_{j=1}^{p} (A(K_{p})^{\ell})_{ij} = p(p-1)^{\ell}$$

Note: We will sum over all the walks instead of just closed walks. Proof:

$$(p^2 - p)A(K_p)_{ij}^{\ell} + pA(K_p)_{ii}^{\ell} = (p^2 - p)\frac{1}{p}((p-1)^{\ell} - (-1)^{\ell}) + p \cdot \frac{1}{p}((p-1)^{\ell} + (p-1)(-1)^{\ell}) = p(p-1)^{\ell}$$

Probability matrix

Let M = M(G) be the matrix whose rows and columns are indexed by the vertex $\{v_1, \dots, v_p\}$ of G, and whose (u,v)-entry is given by

$$M_{uv} = \frac{\mu_{uv}}{d_u}$$

 μ_{uv} - the number of edges between u and v.

 d_u - the number edges incident to u

 M_{uv} - the probablity that is one starts at u, then the next step will be to v.

Example

- When u = 2, $d_u = 2$
- When u = 2 and v = 1, $\mu_{uv} = 1$
- (2,1)-entry is $M_{21} = \frac{\mu_{21}}{d_2} = \frac{1}{2}$
- note: $d_3 = 0$ so we can get rid of isolated point 3.

Example

$$M(G) = \begin{bmatrix} \frac{2}{5} & \frac{1}{5} & \frac{2}{5} & 0\\ \frac{1}{2} & 0 & 0 & \frac{1}{2}\\ \frac{2}{3} & 0 & 0 & \frac{1}{3}\\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
$$A(G) = \begin{bmatrix} 2 & 1 & 2 & 0\\ 1 & 0 & 0 & 1\\ 2 & 0 & 0 & 1\\ 0 & 1 & 1 & 1 \end{bmatrix}$$

Theorem: Let G be a finite graph. Then the probablity matrix M = M(G) is diagonalizable and has only real eigenvalues.

► Let D be the diagonal matrix whose rows and columns are indexed by the vertices of G, with D_{vv} = √d_v

Then

$$(DMD^{-1})_{uv} = \sqrt{d_u} \cdot rac{\mu_{uv}}{d_u} \cdot rac{1}{\sqrt{d_v}}$$
 $(DMD^{-1})_{uv} = rac{\mu_{uv}}{\sqrt{d_u d_v}}$

- DMD^{-1} is a symmetric matrix.
- M is diagonalizable and has only real eigenvalues.

Thank you

Citation: Stanley, Richard, "Topics in Algebraic Combinatorics"