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Outline

1. Introduction to the combinatoric with "coloring” 1 x n
rectangles

2. Definition of graphs and walks
3. Counting walks on graphs
4. Probability matrix of a graph
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Example Combinatorial Problems
» n-colorings of 1 x 5 boards.

NN

» Squares are colored with letters.
AalB[c[D[E]

» Rotating the board 180°, gives a new coloring.

alslclple| L= lefe]e]n]
e

» We define two colorings are "the same” if rotating one results
in the other.
» Special Case

INEIEEIN
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n-Colorings of 1 x 5 Board

» Goal: Count the number of unique colorings with 180° flips.
nla[nlaln]
alalclalal

» n® — n® The number of colorings which don't equal their 180°
rotation.

alelclole]  [Fle[el]n

(One equivalence class)

> 3(n® — n®) (The number of equivalence class of colorings
which don’t equal their 180° rotation.)
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n-Colorings of 1 x 5 Board (Continued)

> 1(n% — n®) (The number of different equivalence classes of

n-colorings which don't equal their 180° rotation.)

» n3 (The number of different equivalence classes of n-colorings
which equal their 180° rotation.)

> 2(n5 — n®) + n® (The total number of different equivalence
classes of n-colorings.)

» Note: This argument can be generalized to n-colorings of
1 x k board.
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Multiset

» Given a finite set S and integer k > 0.

> (i) denotes the set of k-element subsets of S.
» eg. S={1,2,3} and k=2

> (g) = {12,13,23}
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Multiset

A multiset is a set with repeated elements

eg. {1,1,2,2,3,3}

{1,2,1,3,2,3} = {1,1,2,2,3,3}

((i)) denotes the set of k-elements multisets on S.
S=1{1,2,3}and k=2

(3) = {12,13,23}, ((3)) = {11,22,33,12,13,23}

vVvvyVvVvyypy
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Graphs

» A (finite) graph G consists of a vertex set
V ={vi,v,v3,---,vp} and edges set E = {ey,--- , eq} with
a function ¢ : E — ((‘2/))
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Graphs

» A (finite) graph G consists of a vertex set
V ={vi,v,v3,---,vp} and edges set E = {ey,--- , eq} with
a function ¢ : E — ((‘2/))

» V(vertex) ={1,2,3,4,5} and
E(edge) = {el, e2,e3, e4, €5, b6, 7, €8}
> ((¥)) = {11,22,33,44,55,12, 13, 14,15, 23, 24, 25, 34, 35,45}
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Graphs

3

> E(edge) = {el, e2,e3, e4,eb, b, e7, €8}
> (%)) = {11,22,33,44,55,12, 13, 14,15, 23,24, 25, 34, 35,45}
> eg. P(el) =1(e2) =11 (el, e2 are called loops)

> (e3) = 1p(ed) = 14 (there is a multiple edge between 1 and
4)
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Adjacency Matrix of the graphG

» p is the number of vertices in the graph.

» The adjacency matrix of the graph G is the p x p matrix
A = A(G), whose (i, j)-entry ajj is equal to the number of
edges incident to v; and v;.
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Walks

> A walk in G of length ¢ from vertex u to vertex v is a
sequence Va, = U, €31, Vay, €3y, "+, Vay, €3y, Vay,y = V

> A walk in G of length 1 from vertex 1 to vertex 2 is a
sequence 1, e5,2

> A walk in G of length 2 from vertex 1 to vertex 2 could be the
sequence 1,€2,1,e5,2 and sequence 1,el,1, €5, 2.
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Counting Walks

Goal:Count the number of walks from vertex u to vertex v.

Theorem
For any integer £ > 1, the (i, j)-entry of the matrix A(G)’ is eq al
to the number of walks from v; to v; in G of length (.

Sketch of proof
Let A= (a;). The (i,j)-entry of A(G)" is given by

(A(G)Z)ij = Z Qi Aiyiy *** Fig_yqj

where the sum ranges over all sequences (i1, - ,ir—1)
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Example

*3

> (=2

» For each sequence of ¢, vertices starting at i and ending at J,
there are a;; walks of length one from vertex i to i and then
aji, walks of length one from a; to a;, and so on, after ¢ steps
we arrive at j, then sum over all such sequences

2
(A(G)?)21 = ap1a11 + axaz1 + a23331 + azaaa1 + azsasy

(A(G)*)21=2-14+0-14+0-0+0-2+1-0=2
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Example (Continued)
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Example (Continued)

> /=2

(A(G)?)a1 =2
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AL = U.diag(M, ..., \b)U™!

» An easier way to count the number of walks

P> A real symmetric p X p matrix M has p linearly independent
real eigenvectors.

3

A(G) =

=

1
0
1

[ R

M=14+vV2, Mo=-1,A3=1—+2
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» Goal: Diagonalize A
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AL = U.diag(M, ..., \b)U™!

A(G) = (U - diag(M1, ..., \p) - UTH)*
A(G)" = (U-diag(M1, ..., \p)-U™Y) ... (U-diag(\y, ..., Ap)-UY)
A(G) = U - diag(M1, ..., \p) - UL

A(G): = U - diag(\e,...,\5) - U1

1 0 o 1°
0 1-v2 0
0 0 1++2
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The complete graph K,

Kp is a graph with vertex set V = {v1,...,v,}, and one edge
between any two distinct vertices.

> K, has p vertices and (5) = $p(p — 1) edges.
> Example

1 3

2

> V ={1,2,3}. K3 has 3 vertices and (3) = 13(3 - 1) =3
edges.
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Closed walks
» A closed walk of G is a walk that ends where it begins.
» The number of closed walks of length £ in K, from some

vertex v; to itself is given by

(A(Kp))it = ;((p S 4 (p - 1)(-1)))

» Example: Complete Graph K3

1 3

(AK)i = 5((3 -1+ (3 - 1)(-1)") =0

(A(K3)?)ii = %((3 —124+3B-1)(-1)?) =2
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Algebraic Proof

» J denotes the p x p matrix of all 1’s and [ is the identity

matrix.
111 1 00
» =11 1|,/=1]0 1 0
111 0 01
> A(Kp)=J—1
1 11 1 00 011
» A(K3)=J—hk=1|1 1 1| —-[0 1 0| =|1 0 1
1 11 0 01 1 10

» Binomial theorem

n n - n n o
(X+y)n — <k>xn kyk — (k>xky k
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Algebraic Proof

14

Aky) == 1) =3 () 9

k=0
J¥ = pk=t J(mathematical induction)
¢

AKp) = (=1 =D (1) k() Pkt 4+ (=1)4

k=1

Binomial theorem again,

(1) = ;((p S 1) (1) + (~1)1
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Algebraic Proof

A(Ky); = ;((p S 1) - (-1))

A(Ky)G = ;((p 14 (p - 1)(-1))
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The total number of walks of length ¢ in K.

> D (AK) )5 = plp—1)f

i=1 j=1
» Note: We will sum over all the walks instead of just closed walks.

Proof:
(P° — P)A(K,)j + PA(K,); =

(7 - p);«p _1)f = (-1 +p- ;((p ) (p-1)(-1)) =
p(p - 1)°
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Probability matrix

Let M = M(G) be the matrix whose rows and columns are indexed

by the vertex {v1,---,v,} of G, and whose (u,v)-entry is given by
My, = /Z:V

ftyy - the number of edges between u and v.
d, - the number edges incident to u

M, - the probablity that is one starts at u, then the next step will
be to v.
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Example

e3

» Whenu=2,d,=2
» Whenu=2andv=1, py,, =1

> (2.1)-entry is My = 24 = 3

P> note: d3 = 0 so we can get rid of isolated point 3.
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Theorem: Let G be a finite graph. Then the probablity
matrix M = M(G) is diagonalizable and has only real
eigenvalues.

» Let D be the diagonal matrix whose rows and columns are
indexed by the vertices of G, with D,, = +/d,

» Then 1

Vd,

(DMD™Y),, = \/d, - ’fj“v :
u

(DMD™1),, = &
dd,

» DMD™! is a symmetric matrix.

> M is diagonalizable and has only real eigenvalues.
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Thank you

Citation:
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