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Example Combinatorial Problems
▶ n-colorings of 1× 5 boards.

▶ Squares are colored with letters.

A B C D E

▶ Rotating the board 180◦, gives a new coloring.

A B C D E E D C B A
180◦

▶ We define two colorings are ”the same” if rotating one results
in the other.

▶ Special Case

A B C B A A B C B A
180◦

3 / 45



Example Combinatorial Problems
▶ n-colorings of 1× 5 boards.

▶ Squares are colored with letters.

A B C D E

▶ Rotating the board 180◦, gives a new coloring.

A B C D E E D C B A
180◦

▶ We define two colorings are ”the same” if rotating one results
in the other.

▶ Special Case

A B C B A A B C B A
180◦

3 / 45



Example Combinatorial Problems
▶ n-colorings of 1× 5 boards.

▶ Squares are colored with letters.

A B C D E

▶ Rotating the board 180◦, gives a new coloring.

A B C D E E D C B A
180◦

▶ We define two colorings are ”the same” if rotating one results
in the other.

▶ Special Case

A B C B A A B C B A
180◦

3 / 45



Example Combinatorial Problems
▶ n-colorings of 1× 5 boards.

▶ Squares are colored with letters.

A B C D E

▶ Rotating the board 180◦, gives a new coloring.

A B C D E E D C B A
180◦

▶ We define two colorings are ”the same” if rotating one results
in the other.

▶ Special Case

A B C B A A B C B A
180◦

3 / 45



Example Combinatorial Problems
▶ n-colorings of 1× 5 boards.

▶ Squares are colored with letters.

A B C D E

▶ Rotating the board 180◦, gives a new coloring.

A B C D E E D C B A
180◦

▶ We define two colorings are ”the same” if rotating one results
in the other.

▶ Special Case

A B C B A A B C B A
180◦

3 / 45



Example Combinatorial Problems
▶ n-colorings of 1× 5 boards.

▶ Squares are colored with letters.

A B C D E

▶ Rotating the board 180◦, gives a new coloring.

A B C D E E D C B A
180◦

▶ We define two colorings are ”the same” if rotating one results
in the other.

▶ Special Case

A B C B A A B C B A
180◦

3 / 45



n-Colorings of 1× 5 Board
▶ Goal: Count the number of unique colorings with 180◦ flips.

▶ Case 1.
n n n n n n5

▶ Case 2.
n n n 1 1 n3

▶ The number of colorings which don’t equal their 180◦ rotation
is

n5 − n3

▶ The number of equivalence class of colorings which don’t
equal their 180◦ rotation is

1

2
(n5 − n3)
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Burnside Lemma:

▶ Let Y be a finite set and G a subgroup of a symmetric group.
For each π ∈ G , let

Fix(π) = {y ∈ Y : π(y) = y},

so #Fix(π) is the number of cycles of length one in the
permutation π. Let Y /G be the set of orbits of G . Then

|Y /G | = 1

#G

∑
π∈G

#Fix(π)
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Burnside Lemma: Example

▶ Y = {colorings of 1×5 Board} = {ABCDE , · · · ,ABCBA, · · · }
and G = {e, r} where r represents rotation.

▶ For any y ∈ Y , e · y = y .

Fix(e) = Y

#Fix(e) = n5

▶ For r , r · ABCDE = EDCBA

Fix(r) = {ABCBA, . . . }

#Fix(r) = n3
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Burnside Lemma: Example

|Y /G | = 1

#G

∑
π∈G

#Fix(π) =
1

2
(n3 + n5)

The number of equivalence class of colorings which don’t
equal their 180◦ rotation.

1

2
(n3 + n5)− n3 =

1

2
n5 − 1

2
n3

▶▶ The total number of equivalence class is 1
2(n

3 + n5)

▶ The total number of rectangle colorings which equal their
180◦ is n3

▶ The number of equivalence class of colorings which don’t
equal their 180◦ rotation is 1

2n
5 − 1

2n
3
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Burnside Lemma: Example

Let X be the 2× 2 chessboard and let it be labeled as

C = {r , b, y}. A typical coloring can be

How many ways can we color a 2× 2 chessboard with two red
squares, one blue square and one yellow square?

12

we denote Y is the set of all 12 colorings.

8 / 45



Burnside Lemma: Example

Let X be the 2× 2 chessboard and let it be labeled as

C = {r , b, y}. A typical coloring can be

How many ways can we color a 2× 2 chessboard with two red
squares, one blue square and one yellow square? 12

we denote Y is the set of all 12 colorings.

8 / 45



Burnside Lemma: Example

There are many possible choices of a symmetry group G , and this
will affect when two colorings are equivalent.

▶ G1 consists of only the identity permutation (1).

▶ G2 = {(1), (12)(34)} is the group generated by a vertical
reflection.

▶ G3 = {(1), (23)} is the group generated by a reflection in the
main diagonal.

▶ G4 = {(1), (1243), (14)(23), (1342)} is the group of all
rotations.

▶ G5 is the group of all rotations and reflections.

▶ G6 is the symmetric group of all 24 permutations of Y .

For each of these groups, how many inequivalence classes do we
get? For this we can use Burnside Theorem.
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Burnside Lemma: Example(G1)

▶ G1 consists of only the identity permutation (1).

▶ There are 12 colorings in all with two red squares, one blue
square, and one yellow square, and all are inequivalent under
the trivial group.
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Burnside Lemma: Example(G2)

▶ G2 = {(1), (12)(34)} is the group generated by a vertical
reflection.

▶ #Fix(1) = 12, #Fix((12)(34)) = 0

|Y /G2| =
1

2
(12 + 0) = 6

▶ There are 6 inequivalent colorings.
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Burnside Lemma: Example(G3)

▶ G3 = {(1), (23)} is the group generated by a reflection in the
main diagonal.

▶ #Fix(1) = 12, #Fix((23)) = 2

|Y /G3| =
1

2
(12 + 2) = 7

▶ There are 7 inequivalent colorings.
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Burnside Lemma: Example(G4)

▶ G4 = {(1), (1243), (14)(23), (1342)} is the group of all
rotations.

▶ #Fix(1) = 12, #Fix((1243)) = 0, #Fix((14)(23)) = 0,
#Fix((1342)) = 0

|Y /G4| =
1

4
(12 + 0 + 0 + 0) = 3

▶ There are 3 inequivalent colorings.
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Burnside Lemma: Example(G5)

▶ G5 is the group of all rotations and reflections. Therefore,

G5 = {(1), (1243), (14)(23), (1342), (12)(34), (13)(24), (23), (14)}

#Fix(1) = 12,#Fix(14) = 2,#Fix(23) = 2

▶

|Y /G5| =
1

8
(12 + 2 + 2) = 2

▶ There are 2 inequivalent colorings.
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Burnside Lemma: Example(G6)

▶ G6 is the symmetric group of all 24 permutations of X .

▶ There is only one equivalence class.
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Burnside Lemma: Example(G6)

▶ G6 is the symmetric group of all 24 permutations of X .

▶ There is only one equivalence class.
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Poset

▶ A poset P is a set, also denoted P, together with a binary
relation denoted ≤ satisfying the following axioms:

▶ (Reflexivity) x ≤ x for all x ∈ P.

▶ (Antisymmetry) If x ≤ y and y ≤ x ,then x = y .

▶ (Transitivity) If x ≤ y and y ≤ z ,then x ≤ z .

∅

{y}{x} {z}

{x , z}{x , y} {y , z}

{x , y , z}
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Examples of Poset

▶ E.g. N, Z, and R with usual ordering.

▶ Assume that S = {1, 2, 3} is a 3-element set and P contains
all its subsets.

▶ P in this case called a finite boolean algebra of rank 3 and is
denoted by B{1,2,3}.

▶ If x , y ∈ P,then define x ≤ y in P if x ⊆ y as sets.
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Hasse Diagrams
▶ Hasse diagram can be a simple way to represent small posets.

▶ If x < y in P (i.e.,x ≤ y and x ̸= y),then y is drawn “above”
x .

▶ An edge is drawn between x and y if y covers x ,i.e.,x < y and
no element z satisfies x < z < y . We then write x ⋖ y or
y ⋗ x .

▶ By the transitivity property (P3), all the relations of a finite
poset are determined by the cover relations, so the Hasse
diagram determines P.

18 / 45
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Chain

▶ A chain C in a poset is a totally ordered subset of P, i.e., if
x , y ∈ C then either x ≤ y or y ≤ x in P.

▶ E.g. {∅, {1, 2}, {1, 2, 3}} is a chain.

▶ A finite chain is said to have length n if it has n + 1 elements.

▶ {∅, {1}, {1, 2}, {1, 2, 3}} has length 3.
{∅, {1}, {1, 2}} has length 2.
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▶ A finite chain is said to have length n if it has n + 1 elements.
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Chain

▶ A chain is maximal if it’s contained in no larger chain.

▶ E.g. {∅, {1}, {1, 2}, {1, 2, 3}},
{∅, {1}, {1, 3}, {1, 2, 3}},
{∅, {2}, {1, 2}, {1, 2, 3}} are all maximal and many more.
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Chain

▶ A finite poset is graded of rank n if every maximal chain has
length n.

▶ P = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} is finite
and has rank 3
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Partition

▶ A partition λ of an integer n ≥ 0 is a sequence
λ = (λ1, λ2, · · · ) of integers λi ≥ 0 satisfying λ1 ≥ λ2 ≥ · · ·
and

∑
i≥1 λi = n.

▶ All but finitely many λi are equal to 0.

▶ Only the λi > 0 will be called a part of λ.

▶ If λ is a partition of n, then we denote this by |λ| = n.
Written λ ⊢ n.

▶ The seven partitions of 5 are (5), (4, 1), (3, 2), (3, 1, 1),
(2, 2, 1), (2, 1, 1, 1), and (1, 1, 1, 1, 1).
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Young Diagram

▶ The Young Diagram (Diagram) of a partiton λ is a
left-justified array of squares, with λi squares in the ith row.

▶ The example above is the Young diagram of (4, 3, 1, 1).
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Hasse Walk

▶ Hasse diagram of Y has no loops or multiple edges, a walk of
length n is specified by a sequence λ0, λ1, · · · , λn of vertices
of Y .

▶ A walk in the Hasse diagram of a poset is a Hasse walk (or
just walk for this section.)
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Young tableaux

▶ There are two types of walk.

▶ Type U (Up):

▶ λi < λi+1 and |λi | = |λi+1| − 1

▶ Type D (Down):

▶ λi > λi+1 and |λi | = |λi+1|+ 1

▶ If the walk W has steps of types A1,A2, · · · ,An−1,An,
respectively, where each Ai is either U or D, then we say that
W is of type

AnAn−1 · · ·A2A1

▶ The reason that the type of a walk is written in the opposite
order to that of the walk is because we regard U and D as
linear transformations.
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Example

▶ The walk ∅, 1, 2, 1, 11, 111, 211, 21, 22, 21, 31, 41 is of type
UUDDUUUUDUU = U2D2U4DU2.
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The Walks of Type Un which begin at ∅

▶ The Walks of Type Un which begin at ∅ are just saturated
chain ∅ = λ0 ⋖ λ1 ⋖ · · ·⋖ λn.

▶ Goal: Count the number of walks of type Un.
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Young Lattice

∅
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An example of U5

∅
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An example of U5

▶ Suppose a walk of type U5 is ended at λ = (221).

▶ Then this walk can be a sequences of young diagram.

λ0 = ∅⋖λ1 = (1)⋖λ2 = (2)⋖λ3 = (21)⋖λ4 = (211)⋖λ5 = (221)

▶ We can visualize it on the Hasse diagram.
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An example of U5

▶ We can specify the walk by taking the final diagram and
inserting an i into square s if s was added at the ith step.

▶ Thus the above walk is encoded by the ”tableau”
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An example of U5

∅

1 2
3 5
4
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Standard Young Tableaux (SYT)

▶ The standard Young Tableaux consists of the Young diagram
D of some partition λ of an integer n, together with number
number 1, 2, . . . , n inserted into the squares of D.

▶ Each number appears once.

▶ Every row and column is increasing.

▶ We call λ the shape of the SYT τ , denoted λ = sh(τ).

▶ Define f λ the number of SYT of shape λ.
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The example of SYT of λ = (2, 2, 1)

▶ There are 5 SYT of shape (2, 2, 1), given by

▶ Thus f (2,2,1) = 5
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An example of U5

∅

1 2
3 4
5
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Hook Length Formula

▶ Subgoal: How many SYT are there for a single shape λ?

▶ Let u be a square of the Young diagram of the partition λ.
Define the hook H(u) of u to be the set of all squares directly
to the right of u or directly below u, including u itself and
h(u) = |H(u)|.

▶ Below is the diagram of the partition (4, 2, 2).
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Theorem: Hook Length Formula

▶ Theorem: Let λ ⊢ n. Then

f λ =
n!∏

u∈λ h(u)
.
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Example: λ = (4, 2, 2)

▶ Theorem: Let λ ⊢ n. Then

f λ =
n!∏

u∈λ h(u)
.

f (4,2,2) =
(4 + 2 + 2)!

6 · 5 · 2 · 1 · 3 · 2 · 2 · 2 · 1
= 56.

▶ Hence, there are 56 SYT of shape (4, 2, 2)
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Example: λ = (2, 2, 1)

f (2,2,1) =
(2 + 2 + 1)!

4 · 3 · 2 · 1 · 1
= 5.

▶ Hence, there are 5 SYT of shape (2, 2, 1)
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Goal

▶ Goal: Count the number of walks of type Un. Call this
number Tn.

▶ Let’s do the case where n = 5.

Tn =
∑
λ⊢5

f λ =
∑
λ⊢5

n!∏
u∈λ h(u)

Now we calculate T5
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λ = (11111)

∅
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λ = (5)

∅
42 / 45



U5

5 1
3
2
1

5 2 1
2
1

f (2,1,1,1) =
5!

5 · 3 · 2 · 1 · 1
= 4. f (3,1,1) =

5!

5 · 2 · 2 · 1 · 1
= 3.

4 3 1
2 1

5 3 2 1
1

f (3,1,1) =
5!

4 · 3 · 2 · 1 · 1
= 5. f (4,1) =

5!

5 · 3 · 2 · 1 · 1
= 4.
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Goal

T5 = 1 + 4 + 5 + 3 + 5 + 4 + 1 = 23.
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Thank you

Citation:
Stanley, Richard, ”Topics in Algebraic Combinatorics”
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