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Example Combinatorial Problems

» n-colorings of 1 x 5 boards.

[ITTTT]

» Squares are colored with letters.
[A]BIC]DE]
> Rotating the board 180°, gives a new coloring.

180°
[A[BIC]D][E] —————— [EIDIC]B]A]

> We define two colorings are "the same” if rotating one results
in the other.
» Special Case

180°
[AIBIC]B]A] ————— [A[BIC]B]A]
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n-Colorings of 1 x 5 Board

» Goal: Count the number of unique colorings with 180° flips.
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n-Colorings of 1 x 5 Board

» Goal: Count the number of unique colorings with 180° flips.

» Case 1.

n°
» Case 2.

n

» The number of colorings which don't equal their 180° rotation
is
n’>—n

» The number of equivalence class of colorings which don't
equal their 180° rotation is
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Burnside Lemma:

> Let Y be a finite set and G a subgroup of a symmetric group.
For each 7w € G, let

Fix(m)={y € Y :n(y) =y},

so #Fix(m) is the number of cycles of length one in the
permutation 7. Let Y /G be the set of orbits of G. Then

Y/6| = #lc S #Fix(r)

TeG
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Burnside Lemma: Example

» Y = {colorings of 1 x5 Board} = {ABCDE,--- ,ABCBA,---}
and G = {e, r} where r represents rotation.
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Burnside Lemma: Example

» Y = {colorings of 1 x5 Board} = {ABCDE,--- ,ABCBA,---}
and G = {e, r} where r represents rotation.

> ForanyyeVY,e-y=y.
Fix(e) =Y

#Fix(e) = n°

» Forr, r- ABCDE = EDCBA
Fix(r) = {ABCBA, ...}

#Fix(r) = n’
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Burnside Lemma: Example

Y/6l= e 3 #Fix(x) = (0 + )
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Burnside Lemma: Example
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/Gl = g > #Fix(m) = 5+ n°)
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The number of equivalence class of colorings which don't
equal their 180° rotation.
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Burnside Lemma: Example

Y/61= g 3 #Fix() = 50 + )

TeG

The number of equivalence class of colorings which don't
equal their 180° rotation.

1.3, 5 3_1s 134

(P +n)—n==-n"—=-n

2( +m) 2 2

» The total number of equivalence class is %(n3 + n°)

» The total number of rectangle colorings which equal their
180° is n®

» The number of equivalence class of colorings which don't

equal their 180° rotation is %n5 — %n3
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Burnside Lemma: Example

Let X be the 2 x 2 chessboard and let it be labeled as

C ={r,b,v}. A typical coloring can be

r|b
y|r

How many ways can we color a 2 x 2 chessboard with two red
squares, one blue square and one yellow square?
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Burnside Lemma: Example

Let X be the 2 x 2 chessboard and let it be labeled as

C ={r,b,v}. A typical coloring can be

r|b
y|r

How many ways can we color a 2 x 2 chessboard with two red
squares, one blue square and one yellow square? 12

we denote Y is the set of all 12 colorings.
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Burnside Lemma: Example
There are many possible choices of a symmetry group G, and this

will affect when two colorings are equivalent.

» G consists of only the identity permutation (1).
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Burnside Lemma: Example

There are many possible choices of a symmetry group G, and this
will affect when two colorings are equivalent.

» G consists of only the identity permutation (1).

> Gy ={(1),(12)(34)} is the group generated by a vertical
reflection.

» G3 = {(1),(23)} is the group generated by a reflection in the
main diagonal.

> Gy ={(1),(1243),(14)(23),(1342)} is the group of all
rotations.

» G is the group of all rotations and reflections.
» Gg is the symmetric group of all 24 permutations of Y.

For each of these groups, how many inequivalence classes do we
get? For this we can use Burnside Theorem.
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» G consists of only the identity permutation (1).
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Burnside Lemma: Example(G;)

» G consists of only the identity permutation (1).
» There are 12 colorings in all with two red squares, one blue
square, and one yellow square, and all are inequivalent under

the trivial group.
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Burnside Lemma: Example(G,)

> Gy ={(1),(12)(34)} is the group generated by a vertical
reflection.
> #Fix(1) = 12, #Fix((12)(34)) = 0

1
Y/G| = 5(12+0) =6

» There are 6 inequivalent colorings.

r|r r|b r|y b|y r| b rly

by rly r|b r|r y|r b|r
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Burnside Lemma: Example(G;)

» Gz ={(1),(23)} is the group generated by a reflection in the
main diagonal.

12/45



Burnside Lemma: Example(G;)

» Gz ={(1),(23)} is the group generated by a reflection in the
main diagonal.

> #Fix(1) = 12, #Fix((23)) = 2

12/45



Burnside Lemma: Example(G;)

» Gz ={(1),(23)} is the group generated by a reflection in the
main diagonal.
> #Fix(1) = 12, #Fix((23)) = 2

1
Y/Gs| = 5(12+2) =7
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Burnside Lemma: Example(G;)

» Gz ={(1),(23)} is the group generated by a reflection in the
main diagonal.

> #Fix(1) = 12, #Fix((23)) = 2

1
Y/Gs| = 5(12+2) =7

» There are 7 inequivalent colorings.

rr rlr bly yv|b r|b b|r y|r
bly yv|b rr r|r y|r rly r
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Burnside Lemma: Example(G,)

> Gy ={(1),(1243),(14)(23),(1342)} is the group of all
rotations.

> #Fix(1) = 12, #Fix((1243)) = 0, #Fix((14)(23)) = 0,
#Fix((1342)) = 0
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Burnside Lemma: Example(G,)

> Gy = {(1),(1243),(14)(23),(1342)} is the group of all
rotations.

> #Fix(1) = 12, #Fix((1243)) = 0, #Fix((14)(23)) = 0,
#Fix((1342)) = 0

1
1Y/ Ga| =

2(12+0+0+0)=3

» There are 3 inequivalent colorings.

r|r r|r rl b

y|b b|y y|r
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Burnside Lemma: Example(Gs)

» G is the group of all rotations and reflections. Therefore,

Gs = {(1),(1243),(14)(23),(1342),(12)(34), (13)(24), (23),(14)}
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Burnside Lemma: Example(Gs)

» G is the group of all rotations and reflections. Therefore,
Gs = {(1),(1243),(14)(23), (1342), (12)(34), (13)(24), (23), (14)}

#Fix(1) = 12,#Fix(14) = 2, #Fix(23) = 2
>
Y /G| = %(12+2+2) .y

» There are 2 inequivalent colorings.

r|r r|b

bly y|r

14 /45



Burnside Lemma: Example(Gy)

P> Gg is the symmetric group of all 24 permutations of X.
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Burnside Lemma: Example(Gy)

P> Gg is the symmetric group of all 24 permutations of X.

» There is only one equivalence class.
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Poset

> A poset P is a set, also denoted P, together with a binary
relation denoted < satisfying the following axioms:
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Poset

> A poset P is a set, also denoted P, together with a binary
relation denoted < satisfying the following axioms:

> (Reflexivity) x < x for all x € P.
» (Antisymmetry) If x <y and y < x,then x = y.
» (Transitivity) If x <y and y < z,then x < z.

{X’y7z}
VAR RN
{x, yHx, zHy, z}
| X X
{x} {yv} {z}
\@/

16 /45



Examples of Poset

» E.g N, Z, and R with usual ordering.
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Examples of Poset

» E.g N, Z, and R with usual ordering.

» Assume that S = {1,2,3} is a 3-element set and P contains
all its subsets.

» P in this case called a finite boolean algebra of rank 3 and is
denoted by 8{172’3}.
» If x,y € P,then define x < y in P if x C y as sets.
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Hasse Diagrams

P> Hasse diagram can be a simple way to represent small posets.

123

12 23
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12 23
1 3
¢
» If x<yin P (i.e.,x <y and x # y),then y is drawn “above”

X.
> An edge is drawn between x and y if y covers x,i.e.,x < y and
no element z satisfies x < z < y. We then write x < y or

y > Xx.
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Hasse Diagrams

P> Hasse diagram can be a simple way to represent small posets.

123
12 23
1 3
¢
» If x<yin P (i.e.,x <y and x # y),then y is drawn “above”

X.
> An edge is drawn between x and y if y covers x,i.e.,x < y and
no element z satisfies x < z < y. We then write x < y or

y > Xx.
» By the transitivity property (P3), all the relations of a finite
poset are determined by the cover relations, so the Hasse

diagram determines P.
18/45



Chain

123

12 23

> A chain C in a poset is a totally ordered subset of P, i.e., if
x,y € C then either x <y ory < xin P.
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Chain

123

12 23

> A chain C in a poset is a totally ordered subset of P, i.e., if
x,y € C then either x <y ory < xin P.

> E.g. {0,{1,2},{1,2,3}} is a chain.

> A finite chain is said to have length n if it has n + 1 elements.

> {0,{1},{1,2},{1,2,3}} has length 3.
{0,{1},{1,2}} has length 2.
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Chain
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12 23

» A chain is maximal if it's contained in no larger chain.
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Chain

123

12 23

» A chain is maximal if it's contained in no larger chain.

> E.g {0,{1},{1,2},{1,2,3}},
{0,{1},{1,3},{1,2,3}},

{0,{2},{1,2},{1,2,3}} are all maximal and many more.
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Chain

123

12 23

» A finite poset is graded of rank n if every maximal chain has
length n.
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Chain

123

12 23

» A finite poset is graded of rank n if every maximal chain has
length n.
> P={0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} is finite

and has rank 3
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Partition

> A partition A of an integer n > 0 is a sequence
A= (A1, A2, - -+ ) of integers A; > 0 satisfying Ay > Ap > -+ -
and 3 ;5 A =n.
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Partition

> A partition A of an integer n > 0 is a sequence
A= (A1, A2, - -+ ) of integers A; > 0 satisfying Ay > Ap > -+ -
and 3 ;5 A =n.

» All but finitely many A; are equal to 0.
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Partition

> A partition A of an integer n > 0 is a sequence
A= (A1, A2, - -+ ) of integers A; > 0 satisfying Ay > Ap > -+ -
and ) .o A =n.

> All but ﬁnitely many JA; are equal to 0.

Only the A; > 0 will be called a part of A.

v

» If \is a partition of n, then we denote this by |A| = n.
Written A F n.

» The seven partitions of 5 are (5), (4,1), (3,2), (3,1,1),
(2,2,1), (2,1,1,1), and (1,1,1,1,1).
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Young Diagram

» The Young Diagram (Diagram) of a partiton A is a
left-justified array of squares, with \; squares in the ith row.

» The example above is the Young diagram of (4,3,1,1).
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Hasse Walk

» Hasse diagram of Y has no loops or multiple edges, a walk of
length n is specified by a sequence Ag, A1, -+, A, of vertices
of Y.
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Hasse Walk

» Hasse diagram of Y has no loops or multiple edges, a walk of
length n is specified by a sequence Ag, A1, -+, A, of vertices
of Y.

» A walk in the Hasse diagram of a poset is a Hasse walk (or
just walk for this section.)

24 /45



Young tableaux

» There are two types of walk.
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Young tableaux

There are two types of walk.

Type U (Up):

N < XMtland M| = N —1

Type D (Down):

A > A FLand [N = (N 41

If the walk W has steps of types A1, Ap, -+, An_1, Ap,

respectively, where each A; is either U or D, then we say that
W is of type

VVvyYvYyVvYvyy

AnAn—l e A2A1
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Young tableaux

VVvyYvYyVvYvyy

There are two types of walk.

Type U (Up):

N < XMtland M| = N —1

Type D (Down):

A > A FLand [N = (N 41

If the walk W has steps of types A1, Ap, -+, An_1, Ap,
respectively, where each A; is either U or D, then we say that

W is of type
AnAn—l e A2A1

The reason that the type of a walk is written in the opposite
order to that of the walk is because we regard U and D as
linear transformations.

25/45



Example

> The walk 0,1,2,1,11,111,211,21,22,21,31,41 is of type
UUDDUUUUDUU = U2D2U*DU2.
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The Walks of Type U" which begin at ()

» The Walks of Type U" which begin at () are just saturated
chain ) =0 < A\l <. <A™

» Goal: Count the number of walks of type U".
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An example of U°

» Suppose a walk of type U° is ended at A\ = (221).
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An example of U°

» Suppose a walk of type U° is ended at A\ = (221).

» Then this walk can be a sequences of young diagram.

N =< =(1)<A?=(2) <A =(21) < * = (211) < \° = (221)

o [ [[] | |

» We can visualize it on the Hasse diagram.

30/45



An example of U°

o [J 1]

» We can specify the walk by taking the final diagram and
inserting an / into square s if s was added at the ith step.
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An example of U°

o [J 1]

» We can specify the walk by taking the final diagram and
inserting an / into square s if s was added at the ith step.

» Thus the above walk is encoded by the "tableau”

‘Aw»—n
w

31/45
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Standard Young Tableaux (SYT)

» The standard Young Tableaux consists of the Young diagram
D of some partition A of an integer n, together with number
number 1,2,..., n inserted into the squares of D.
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Standard Young Tableaux (SYT)

» The standard Young Tableaux consists of the Young diagram
D of some partition A of an integer n, together with number
number 1,2,..., n inserted into the squares of D.

» Each number appears once.

» Every row and column is increasing.

1|2
3|4
5

» We call A the shape of the SYT 7, denoted A = sh(7).
» Define f* the number of SYT of shape .

33/45



The example of SYT of A = (2,2,1)

» There are 5 SYT of shape (2,2,1), given by
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The example of SYT of A = (2,2,1)

» There are 5 SYT of shape (2,2,1), given by

1 1|2 1|3 1 1
4 3]s 2 2
5 4 5 4 3

> Thus F221 =5

34/45
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Hook Length Formula

» Subgoal: How many SYT are there for a single shape \?

> Let u be a square of the Young diagram of the partition A.
Define the hook H(u) of u to be the set of all squares directly
to the right of u or directly below v, including u itself and

h(u) = [H(u)].
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Hook Length Formula

» Subgoal: How many SYT are there for a single shape \?

> Let u be a square of the Young diagram of the partition A.
Define the hook H(u) of u to be the set of all squares directly
to the right of u or directly below v, including u itself and
h(u) = [H(u)|.

» Below is the diagram of the partition (4, 2,2).

6521
2
211
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Theorem: Hook Length Formula

» Theorem: Let A\ n. Then

n!

A
= oo by
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Example: A = (4,2,2)

» Theorem: Let A\ - n. Then
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Example: A = (4,2,2)

» Theorem: Let A\ - n. Then

n!

A
= o)

6521
2
211

(4+2+2)! B
6-5-2-1.3.2.2.2.1

f(4’2’2) _

56.
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Example: A = (4,2,2)

» Theorem: Let A\ - n. Then

A n!
[Tuex h(u)
65|21
2
211
(422) _ (4+2+2)! 56.

6-5.2.1-3.2.2.2-1

» Hence, there are 56 SYT of shape (4,2,2)
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Example: A = (2,2,1)
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Example: A = (2,2,1)

4 | 2
3 |1
1

4.3.2.1-1

39/45



Example: A = (2,2,1)

4 | 2
3 |1
1

4.3.2.1-1

» Hence, there are 5 SYT of shape (2,2,1)
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Goal

» Goal: Count the number of walks of type U". Call this
number T,.

» Let's do the case where n = 5.

T, = A = nil
Z % Hue)\ h(u)

A5

Now we calculate T5
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—LL]




5[2[1]
2
1]
51
Gy _ 2
f 5.2.2-1-1 =3
5[3[2]1]
1]
5l
FA) — = g
5.3.2-1-1
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Goal

Ts=14+4+5+3+5+4+1=23.
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Thank you

Citation:
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